Analysis of Vocabulary and Subword Tokenization Settings for Optimal Fine-tuning of MT

A Case Study of In-domain Translation

Javad Pourmostafa Dimitar Shterionov Pieter Spronck

Department of Intelligent Systems Tilburg University, The Netherlands

RANLP 2025 — September 10 — Varna, Bulgaria

Introduction

Motivation

- SW tokenization and vocabulary crucially affect both training and fine-tuning of MT models.
- Fine-tuning adapts models to new data, but:
 - New data introduces unseen tokens.
 - Token distributions can differ from the base domain.
- The **original SW model** may be less suitable for the new domain.

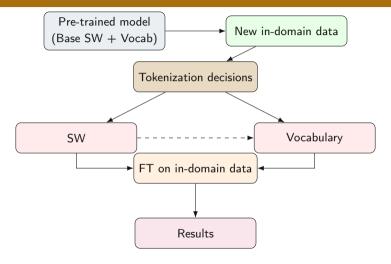
Problem Statement

- Prior work: fine-tuning improves MT, but pipelines typically assume **reusing the** base tokenizer and vocabulary.
- Gap: the effect of different SW segmentation and vocabulary creation strategies during FT is not systematically studied.
- We ask:
 - Which SW + vocab configurations give the best **in-domain** performance?
 - How do these choices affect generalization to out-of-domain (OOD) data and overall efficiency?

Scope: controlled NMT setup, not LLMs, to isolate tokenization effects [2, 3].

Pipeline

Where SW & Vocabulary sit in the DA pipeline



In this work, we used BPE for subword tokenization.

Decision Points

Decision points

- A. SW segmentation: reuse base BPE; train in-domain BPE; train combined BPE [9, 7].
- B. Vocabulary: reuse base vocabulary; expand with base+in-domain; use in-domain vocabulary.

Notation: D = out-of-domain data, E = in-domain data.

Decision points: SW segmentation & Vocabulary

SW segmentation

- D_{BPE}: maximum compatibility with base model.
- E_{BPE}: captures domain morphemes/terms; better for in-domain.
- $(D+E)_{BPE}$: compromise across distributions [9, 7].

Vocabulary

- |D|: safe, no change; misses domain terms.
- |D + E|: extends base with domain tokens.
- |E|: maximal domain capacity; mismatch to base [8].

SW segmentation defines how words are split; the vocabulary source determines which subwords are included in the embeddings.

Evaluated configurations (C1–C9)

Config	BPE (vocab+FT)	Vocab source	Status
C1	D_{BPE}	D	Valid
C2	D_{BPE}	D+E	Valid
C3	D_{BPE}	E	Weak
C4	E_{BPE}	D	Weak
C5	E_{BPE}	D+E	Valid
C6	E_{BPE}	E	Valid
C7	$(D+E)_{BPE}$	D+E	Valid
C8	$(D+E)_{BPE}$	D	Excluded
C9	$(D+E)_{BPE}$	Е	Excluded

Valid: consistent SW+vocab sources (C1, C2, C5, C6, C7).

Weak: mismatched but tested for comparison (C3, C4).

Excluded: severe mismatches (C8, C9).

Experimental Setup

Data

- Out-of-domain (OOD, D): WMT18 English–German (En–De) subset \sim 12.7M sentence pairs.
- In-domain (E): Medical En−De ~248K sentence pairs (cleaned/re-split).
- Combined (D+E): oversample E to balance; used for SW/vocab where required [8, 9].

Model & Training

- OpenNMT-py Transformer: 6e/6d, d=512, 8 heads, FFN= 2048 [2, 3].
- Noam LR 2.0; warmup 8k; label smoothing 0.1.
- ≤200k steps; early stopping; batch 10,240 tokens; grad-acc 4.
- BPE merges: 8k/30k/50k by corpus size; src/tgt trained separately [9, 1, 6].

Design & Metrics

- Setup: Base model trained on D; fine-tuned on E under C1–C7 (vary only SW +vocab).
- Translation metrics:
 - BLEU (primary, with bootstrap resampling for reliability).
 - TER and chrF2 as secondary metrics for tie-breaking and nuance.
- Efficiency metrics:
 - Training time (hours).
 - Carbon emissions via CodeCarbon [7].
- Decision rule: rank by BLEU (with stats), resolve close cases with TER/chrF2, and reason about cost with efficiency.

Results

In-domain results (test on *E*)

Cfg	BPE	Vocab	BLEU ↑	$TER\downarrow$	chrF2 ↑
C1	D_{BPE}	D	53.6	49.3	69.4
C2	D_{BPE}	D+E	53.4	49.9	69.5
C3	D_{BPE}	E	51.7	50.9	68.4
C4	E _{BPE}	D	46.6	53.0	64.5
C5	E _{BPE}	D+E	53.1	49.7	68.9
C6	E _{BPE}	E	54.8	48.9	69.8
C7	$(D+E)_{BPE}$	D+E	53.2	50.1	69.1

Takeaway: In-domain BPE+vocab (C6) wins; mismatched segmentation/vocab (C3 and C4) hurts.

Vocabulary overlap vs. in-domain performance

Cfg	BLEU	SRC Overlap %	New Tokens SRC	New Tokens TGT
C6	54.8	82.84	13,022	13,559
C5	53.1	83.04	14,289	14,157
C7	53.2	97.61	14,300	15,077
C2	53.4	83.04	11,736	11,804
C1	53.6	100.00	0	0

Note: SRC Overlap % = proportion of source-side vocabulary shared with the base model (higher = fewer new tokens introduced).

Takeaway: C6 performs best by adding many in-domain tokens (low overlap). C1 is most stable (full overlap) but adapts least. Hybrids (C2, C5, C7) sit in-between.

Out-of-domain & efficiency at a glance

Out-of-domain (test on D)

Cfg	BPE / Vocab	BLEU	Drop	Drop (%)
Base	D _{BPE} / D	33.9	-	-
C2	$D_{BPE} \ / \ D + E$	15.1	-18.8	-55.5
C7	$(D+E)_{BPE} \ / \ D+E$	15.0	-18.9	-55.8
C1	D_{BPE} / D	13.1	-20.8	-61.4
C6	E _{BPE} / E	7.7	-26.2	-77.3
C5	$E_{BPE} / D + E$	7.0	-26.9	-79.4

Efficiency (FT cost)

Cfg	BPE	CO ₂ (g)	Time (h)
C6	E_{BPE}	1587.4	09:30
C1	D_{BPE}	1658.7	07:45
C5	E_{BPE}	729.0	03:15
C2	D_{BPE}	1198.7	05:15
C7	$(D+E)_{BPE}$	543.8	03:08

Takeaway: Domain alignment (*E*-specific, e.g. C6) boosts in-domain but collapses out-of-domain. Hybrids (C2, C7) preserve OOD and are more efficient (lower CO₂, shorter training).

Limits & Next Steps

Limitations & Next steps

Limitations

- One language pair (En-De) and one domain (medical).
- Only BPE; fixed hyperparameters.
- Automatic metrics only (BLEU, TER, chrF2).

Next steps

- More domains/pairs; multilingual setups.
- Compare tokenizers (WordPiece, Unigram, LMVR).
- Adaptive vocab selection; test LLM-based MT.
- Add COMET and human evaluation; study HP-tokenization trade-offs.

Takeaways

Practical recommendations

- Best in-domain: train both BPE and vocab on in-domain data.
- Balanced setup: use combined base+domain vocab/BPE to keep overlap and OOD strength.
- Avoid mismatches: mixing segmentation and vocab sources hurts performance.
- Plan resources: introducing many new domain tokens increases FT time and CO₂; hybrids are faster/greener.

Благодаря!

Thank you!

https://github.com/JoyeBright/subword-ft-guide

References

- Papineni, K. et al. (2002). BLEU. ACL.
- Snover, M. et al. (2006). TER. AMTA.
- Popović, M. (2015). chrF. WMT.
- Luong, M.-T. et al. (2015). Attention-based NMT. EMNLP.
- Freitag, M. et al. (2016). Fast DA for NMT. arXiv.
- Pourmostafa Roshan Sharami, J. et al. (2022). Selecting data for FT NMT.
- Lim, K. et al. (2018). Subword segmentation for NMT.
- Sato, M. et al. (2020). Vocabulary adaptation for domain transfer.
- Sennrich, R. et al. (2016). BPE for rare words. ACL.

References (cont.)

- Kudo, T., Richardson, J. (2018). SentencePiece. EMNLP.
- Klein, G. et al. (2017). OpenNMT. ACL.
- Vaswani, A. et al. (2017). Attention Is All You Need. NeurIPS.
- Aharoni, R., Goldberg, Y. (2020). Unsupervised domain splits.
- Koehn, P., Knowles, R. (2017). Six Challenges for NMT. ACL.
- Adlaon, K., Marcos, D. (2024). Optimal BPE merges.
- Courty, B. et al. (2024). CodeCarbon. Zenodo.
- Wang, X. et al. (2020). Balancing Training for Multilingual NMT. ACL.
- Liu, Y. et al. (2020). Multilingual Denoising Pre-training. TACL.