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Introduction



Introduction > Motivation

Motivation

• SW tokenization and vocabulary crucially affect both training and fine-tuning
of MT models.

• Fine-tuning adapts models to new data, but:
• New data introduces unseen tokens.
• Token distributions can differ from the base domain.

• The original SW model may be less suitable for the new domain.
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Introduction > Problem Statement

Problem Statement

• Prior work: fine-tuning improves MT, but pipelines typically assume reusing the
base tokenizer and vocabulary.

• Gap: the effect of different SW segmentation and vocabulary creation
strategies during FT is not systematically studied.

• We ask:
• Which SW + vocab configurations give the best in-domain performance?
• How do these choices affect generalization to out-of-domain (OOD) data and

overall efficiency?

Scope: controlled NMT setup, not LLMs, to isolate tokenization effects [2, 3].
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Pipeline



Pipeline > Tokenization in DA

Where SW & Vocabulary sit in the DA pipeline

Pre-trained model
(Base SW + Vocab) New in-domain data

Tokenization decisions

SW Vocabulary

FT on in-domain data

Results

In this work, we used BPE for subword tokenization.
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Decision Points



Decision Points > Overview

Decision points

• A. SW segmentation: reuse base BPE; train in-domain BPE; train combined
BPE [9, 7].

• B. Vocabulary: reuse base vocabulary; expand with base+in-domain; use
in-domain vocabulary.

Notation: D = out-of-domain data, E = in-domain data.
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Decision Points > Segmentation & Vocabulary

Decision points: SW segmentation & Vocabulary

SW segmentation

• DBPE: maximum compatibility with
base model.

• EBPE: captures domain
morphemes/terms; better for
in-domain.

• (D + E )BPE: compromise across
distributions [9, 7].

Vocabulary

• |D|: safe, no change; misses domain
terms.

• |D + E |: extends base with domain
tokens.

• |E |: maximal domain capacity;
mismatch to base [8].

SW segmentation defines how words are split; the vocabulary source determines which
subwords are included in the embeddings.
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Decision Points > Configurations

Evaluated configurations (C1–C9)

Config BPE (vocab+FT) Vocab source Status

C1 DBPE D Valid
C2 DBPE D+E Valid
C3 DBPE E Weak
C4 EBPE D Weak
C5 EBPE D+E Valid
C6 EBPE E Valid
C7 (D + E )BPE D+E Valid
C8 (D + E )BPE D Excluded
C9 (D + E )BPE E Excluded

Valid: consistent SW+vocab sources (C1, C2, C5, C6, C7).
Weak: mismatched but tested for comparison (C3, C4).
Excluded: severe mismatches (C8, C9).

6/14



Experimental Setup



Experimental Setup > Data

Data

• Out-of-domain (OOD, D): WMT18 English–German (En–De) subset ∼12.7M
sentence pairs.

• In-domain (E): Medical En–De ∼248K sentence pairs (cleaned/re-split).

• Combined (D+E): oversample E to balance; used for SW/vocab where
required [8, 9].
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Experimental Setup > Model & Training

Model & Training

• OpenNMT-py Transformer: 6e/6d, d=512, 8 heads, FFN= 2048 [2, 3].

• Noam LR 2.0; warmup 8k; label smoothing 0.1.

• ≤200k steps; early stopping; batch 10,240 tokens; grad-acc 4.

• BPE merges: 8k/30k/50k by corpus size; src/tgt trained separately [9, 1, 6].
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Experimental Setup > Design & Metrics

Design & Metrics

• Setup: Base model trained on D; fine-tuned on E under C1–C7 (vary only SW
+vocab).

• Translation metrics:
• BLEU (primary, with bootstrap resampling for reliability).
• TER and chrF2 as secondary metrics for tie-breaking and nuance.

• Efficiency metrics:
• Training time (hours).
• Carbon emissions via CodeCarbon [7].

• Decision rule: rank by BLEU (with stats), resolve close cases with TER/chrF2,
and reason about cost with efficiency.
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Results



Results > In-domain scores

In-domain results (test on E)

Cfg BPE Vocab BLEU ↑ TER ↓ chrF2 ↑

C1 DBPE D 53.6 49.3 69.4
C2 DBPE D+E 53.4 49.9 69.5
C3 DBPE E 51.7 50.9 68.4
C4 EBPE D 46.6 53.0 64.5
C5 EBPE D+E 53.1 49.7 68.9
C6 EBPE E 54.8 48.9 69.8
C7 (D + E)BPE D+E 53.2 50.1 69.1

Takeaway: In-domain BPE+vocab (C6) wins; mismatched segmentation/vocab (C3 and C4) hurts.
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Results > Vocabulary overlap

Vocabulary overlap vs. in-domain performance

Cfg BLEU SRC Overlap % New Tokens SRC New Tokens TGT

C6 54.8 82.84 13,022 13,559
C5 53.1 83.04 14,289 14,157
C7 53.2 97.61 14,300 15,077
C2 53.4 83.04 11,736 11,804
C1 53.6 100.00 0 0

Note: SRC Overlap % = proportion of source-side vocabulary shared with the base model (higher =
fewer new tokens introduced).

Takeaway: C6 performs best by adding many in-domain tokens (low overlap). C1 is most stable (full
overlap) but adapts least. Hybrids (C2, C5, C7) sit in-between.
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Results > Generalization & efficiency

Out-of-domain & efficiency at a glance

Out-of-domain (test on D)

Cfg BPE / Vocab BLEU Drop Drop (%)

Base DBPE / D 33.9 – –
C2 DBPE / D + E 15.1 -18.8 -55.5
C7 (D + E)BPE / D + E 15.0 -18.9 -55.8
C1 DBPE / D 13.1 -20.8 -61.4
C6 EBPE / E 7.7 -26.2 -77.3
C5 EBPE / D + E 7.0 -26.9 -79.4

Efficiency (FT cost)

Cfg BPE CO2 (g) Time (h)

C6 EBPE 1587.4 09:30
C1 DBPE 1658.7 07:45
C5 EBPE 729.0 03:15
C2 DBPE 1198.7 05:15
C7 (D + E)BPE 543.8 03:08

Takeaway: Domain alignment (E -specific,
e.g. C6) boosts in-domain but collapses
out-of-domain. Hybrids (C2, C7) preserve
OOD and are more efficient (lower CO2,
shorter training).
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Limits & Next Steps

Limitations & Next steps

Limitations

• One language pair (En–De) and one domain (medical).

• Only BPE; fixed hyperparameters.

• Automatic metrics only (BLEU, TER, chrF2).

Next steps

• More domains/pairs; multilingual setups.

• Compare tokenizers (WordPiece, Unigram, LMVR).

• Adaptive vocab selection; test LLM-based MT.

• Add COMET and human evaluation; study HP–tokenization trade-offs.
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Takeaways



Takeaways > Recommendations

Practical recommendations

• Best in-domain: train both BPE and vocab on in-domain data.

• Balanced setup: use combined base+domain vocab/BPE to keep overlap and
OOD strength.

• Avoid mismatches: mixing segmentation and vocab sources hurts performance.

• Plan resources: introducing many new domain tokens increases FT time and
CO2; hybrids are faster/greener.
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Благодаря!
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https://github.com/JoyeBright/subword-ft-guide

https://github.com/JoyeBright/subword-ft-guide
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